Rejection-free Monte Carlo algorithms for models with continuous degrees of freedom.

نویسندگان

  • J D Muñoz
  • M A Novotny
  • S J Mitchell
چکیده

We construct a rejection-free Monte Carlo algorithm for a system with continuous degrees of freedom. We illustrate the algorithm by applying it to the classical three-dimensional Heisenberg model with canonical Metropolis dynamics. We obtain the lifetime of the metastable state following a reversal of the external magnetic field. Our rejection-free algorithm obtains results in agreement with a direct implementation of the Metropolis dynamic and requires orders of magnitude less computational time at low temperatures. The treatment is general and can be extended to other dynamics and other systems with continuous degrees of freedom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

2 2 O ct 1 99 8 Extending the Broad Histogram Method for Continuous Systems ∗

We propose a way of extending the Broad Histogram Monte Carlo method (BHMC) to systems with continuous degrees of freedom, and we apply these ideas to investigate the three-dimensional XY-model. Our method gives results in excellent agreement with Metropolis and Histogram Monte Carlo simulations and calculates for the whole temperature range 1.2 < T < 4.7 using only 2 times more computer effort...

متن کامل

Cluster Monte Carlo Algorithms for Dissipative Quantum Systems

Dissipation and decoherence in quantum systems have important practical implications, from stabilizing superconductivity in granular materials, to the loss of information stored in qubits. In all the models we study, energy dissipation is introduced by coupling a quantum mechanical degree of freedom to a bath of suitably chosen harmonic oscillators. The degrees of freedom of this bath can be in...

متن کامل

Random Sequential Adsorption, Series Expansion and Monte Carlo Simulation

Random sequential adsorption is an irreversible surface deposition of extended objects. In systems with continuous degrees of freedom coverage follows a power law, θ(t) ≈ θJ−c t , where the exponent α depends on the geometric shape (symmetry) of the objects. Lattice models give typically exponential saturation to jamming coverage. We discuss how such function θ(t) can be computed by series expa...

متن کامل

Anomalous diffusion analysis of the lifting events in the event- chain Monte Carlo for the classical XY models

We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable or the position of the spin to be updated moves to one of its interacting spin stochastically. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003